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From omics to GEMSs
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From omics to GEMSs

Genome Transcriptome Proteome Metabolome Fluxome

Build context specific models
&

Improve flux prediction



Data integration into GEMs
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Data integration into GEMs
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IMAT method

discrete

absolute

Network-based prediction of human
tissue-specific metabolism

Tomer Shlomi’*, Moran N Cabili’**, Markus ] Herrgﬁrdz, Bernhard @ Palsson? & Eytan Ruppinm
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Gene expression level distribution
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Gene-Protein-Reaction (GPR) rules
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IMAT method (example)
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IMAT method (example)
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IMAT method

MILP formulation

P _ i R, : highly expressed reactions
Jnle_ E :ieRH (yi TY; ) T 5 icR; Vi R, : lowly expressed reactions
& y," : reaction is active
Sol y; : reaction is not active
S-v=0

Vmin <V < Vmax

Vi + ¥ (Vminj — &) > Vmini,i € Ry

Vi +y; (vmax,,- +8) < Vmax,ii! € Ry

Vimini(1 — ¥ ) < i < Vmaxi(1—y),i € RL
y € R™

yi» i € [0,1]

Shlomi, Cabili et al., Nature Biotechnology, 2008



REMI method

RESEARCH ARTICLE

Enhanced flux prediction by integrating
relative expression and relative metabolite
abundance into thermodynamically
consistent metabolic models

Vikash Pandey, Noushin Hadadi), Vassily Hatzimanikatis *

Laboratory of Computational Systems Biotechnology, EPFL, Lausanne, Switzerland
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Expression deregulation distribution
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Expression deregulation distribution
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REMI workflow for expression data integration
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REMI workflow for expression data integration
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REMI workflow for expression data integration
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REMI method
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REMI method

MILP formulation
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REMI method (example)

Flux ratio constraint:
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REMI method (example)
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REMI method (example)
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REMI method — Metabolomics

From metabolomics to fluxes



REMI method — Metabolomics

From metabolomics to fluxes
- Upregulated metabolite
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REMI method — Metabolomics
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REMI method — Metabolomics

From metabolomics to fluxes
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REMI method — Metabolomics

From metabolomics to fluxes
- Downregulated metabolite
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And many more methods...

Algorithm Year Programming language
Covert-013 2001 NA

Covert-02 2002 NA

Akesson-0427 2004 NA

SR-FBA2® 2007 NA

Shlomi-08'7 2008 NA

GIMME® 2008 MATLAB + COBRA
E-Flux®® 2009 MATLAB + COBRA
Moxley*® 2009 NA

MBA3! 2010 MATLAB + COBRA
MADE?? 2011 MATLAB + COBRA
tFBA 2011 NA

RELATCH>* 2012 MATLAB + COBRA
INIT'® 2012 MATLAB + COBRA + RAVEI
mCADRE*® 2012 MATLAB + COBRA
Adam?® 2012 NA

Lee-12%7 2012 MATLAB + COBRA
Fang-123% 2012 MATLAB + COBRA
GX-FBA3? 2012 MATLAB + COBRA

Algorithm Year Programming language
TEAM*® 2012 NA

GIM3E*! 2013 Python+COBRApy
EXAMO*? 2013 Python standalone
MTA* 2013 NA

FASTCORE** 2014. MATLAB + COBRA
tINIT*S 2014 NA

E-Fmin*® 2014 MATLAB

METRADE* 2015 MATLAB

Lsei-FBA*® 2015 R-package
FASTCORMICS*® 2015 MATLAB + COBRA
TREM-Flux®° 2015 MATLAB

RegrEx®' 2015 MATLAB + COBRA
CORDA?? 2016 MATLAB + COBRA
OM-FBA>3 2016 MATLAB

E-Flux2>* 2016 MATLAB+Java+ (MOST)
SPOT** 2016 MATLAB+Java+ (MOST)
metaboGSE>® 2018 R-package
Benchmark-driven®® 2019 MATLAB

Jalili et al., npj Systems Biology and Applications, 2023



